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The problem of stability for a system of linear differential equations with coefficients which are periodic in time and depend on 

the parameters is considered. The singularities of the general position arising at the boundaries of the stability and instability 

(parametric resonance) domains in the case of two and three parameters are listed. A constructive approach is proposed which 

enables one, in the first approximation, to determine the stability domain in the neighbourhood of a point on the boundary (regular 

or singular) from the information at this point. This approach enables one to eliminate a tedious numerical analysis of the stability 

region in the neighbourhood of the boundary point and can be employed to construct the boundaries of parametric resonance 

domains. As an example, the problem of the stability of the oscillations of an articulated pipe conveying fluid with a pulsating 

velocity is considered. In the space of three parameters (the average fluid velocity and the amplitude and frequency of pulsations) 

a singularity of the boundary of the stability domain of the “dihedral angle” type is obtained and the tangential cone to the stability 

domain is calculated. 0 2001 Elsevier Science Ltd. All rights reserved. 

The main problem of the theory of parametric resonance is to construct stability and instability 
domains in the parameter space [l]. It is well known that the boundary of the stability domain in 
the parameter plane can have singularities, for example, a point of inflection. When there are a large 
number of parameters in the system one must expect more complex singularities to arise, the occurrence 
of which may be reflected in the physical properties of the system. Of all the types of singularities 
that may occur, it is most important to investigate singularities of the general position (typical 
singularities). 

Despite the advances in modern computers, numerical multiparameter analysis of the stability of 
periodic systems is a complicated problem, in view of the need to carry out a multiple integration of 
differential equations. This applies particularly to systems with a large number of degrees of freedom 
and when analysing stability domains close to singular points of the boundary. 

Below we present a classification of singularities of the general position of the boundaries of stability 
domains for systems of linear differential equations of general type with coefficients which are periodic 
in time and depend on two or three parameters. A constructive approach is proposed which enables 
one, in the first approximation, to determine the stability domain in the neighbourhood of a point on 
its boundary using only information at this point: the values of multipliers, eigenvectors and associated 
vectors of the monodromy matrix and the first derivatives of the system operator with respect to 
parameters. The proposed approach uses general formulae for the derivatives of the monodromy matrix 
with respect to parameters [2] and perturbation theory of eigenvalues of the matrices [3,4]. Unlike a 
number of previous investigations [l] no assumption regarding closeness of the periodic system to an 
autonomous system is used. 

The singularities of boundaries of the stability domains of autonomous systems were investigated 
previously in [5-81. 

1. THE MONODROMY MATRIX AND ITS DERIVATIVES 

Consider a system of linear homogeneous differential equations with periodic coefficients 

*=cx (1.1) 
where x is a real vector of dimension m and G = G(t) is a real matrix function of dimension m X m, 
continuous in time t and periodic with minimum period T, G(t+ T) = G(t). 
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Suppose the vector function xi(t), . . . , x,Jf) are the solutions of system of equations (l.l), which are 
linearly independent for a certain t = to (and consequently for all t E R also). The matrix X(t), composed 
of the column vectors x,(t), . . . , x,(t), is called the fundamental matrix. If, in addition, X(f) satisfies the 
initial condition X(0) = I, where I is the identity matrix, then X(t) is called the matriciant [l]. Note that 
the fundamental matrix X(t) is non-singular for all t E R. 

If X(t) is the matriciant of system of equations (l.l), the matrix 

F=X(T) (1.2) 

is called the transition matrix or the monodromy matrix [l]. The monodromy matrix F can be obtained 
by m-fold numerical integration of system of equations (1.1) over the period T with initial conditions 
which are the columns of the identity matrix I. 

The stability of system (1.1) is determined by the following conditions, imposed on eigenvalues 
(multipliers) of the monodromy matrix F [l]: if all the multipliers lie inside the unit circle lpi] < 1 
(j = 1, . . . , m), system (1.1) is asymptotically stable; if at least one multiplier lies outside this circle, 
system (1.1) is unstable. 

We will assume that the matrix G in (1.1) depends not only on time but depends continuously on the 
vector of the real parameters p = (pl, . . . , p,J. Together with system (1.1) we will also consider the 
adjoint system [l] 

jr =-Cry (1.3) 

where y is a real vector of dimension m. The equations for the matriciants of system (1.1) and (1.3) 
have the form [l] 

X =GX, X(O)= I; Y =-GrY, Y(O)=1 (1.4) 

Matriciants X(t) and Y(t) are connected by the relation X(t)rY(t) = I [l]. 
Explicit expressions for the derivatives of the monodromy matrix F with respect to parameters 

were obtained in [2] in terms of the matriciants X(t) and Y(t). The first and second derivatives have the 
form 

We will derive an expression for the derivatives of the monodromy matrix of arbitrary order. To do this 
we introduce the vector h = (h’, . . . , h”) with non-negative integer components, not equal to zero 
simultaneously, and we will use the notation 1 hi = h’ + . . . + h”, h! = h’! . . . h”!. Then, using the functions 

Bh(t) = ;Yr(r) 
alh’G 

aP:’ . ..a& 
X(t) 

we write an expression for the derivative of order (hi in the form 

alh’F 

aP:’ . ..aP.“” 
= h!F, h +.,f;, =h 1 B,,( (4) ~~~'h,,(~,)~4 . . . 4 

s&:.,lhf ' 
0 

The formulae for the derivatives of the monodromy matrix can be extended to the case when the 
period is a continuous function of the vector of the parameters T = T(p). For example, differentiating 
the monodromy matrix F(p) = X(T(p), p) with respect toPk and using Eqs (1.4), we have 

aF ax(T(P), P) 

z= +, =(~)r+($)r~Z($J)T+G(T)F~ 



On the boundaries of the parametric resonance domain 911 

The first term on the right-hand side is determined by the first expression of (1.5). As a result we obtain 
a formula for the first derivative of the monodromy matrix for the case when the period depends on 
parameters 

(1.6) 

2. THE BOUNDARY OF THE PARAMETRIC 
RESONANCE DOMAIN AND ITS SINGULARITIES 

Consider the monodromy matrix F(p) of periodic system (1.1). The matrix function F(p) is con- 
tinuous (the term “a family of matrices” is also used in the mathematical literature). The 
condition for asymptotic stability divides the space of parameters R” into stability and instability 
(parametric resonance) domains. The transition from a stability domain to an instability domain 
is accompanied by certain multipliers leaving the unit circle. In particular, the passage of the real 
multipliers through the points 1 and -1 is called the fundamental resonance, while the exit of a complex- 
conjugate pair through the unit circle at points exp(2 io)(o f nk, k E Z) is called combination 
resonance. 

In the general case, the boundary of the stability domain is a continuous hypersurface in parameter 
space having singularities (points where continuity is lost). In this case, we are primarily interested in 
singularities of the general position (typical singularities). The occurrence of such singularities can always 
be expected when investigating specific systems. As regards singularities of non-general position, they 
are a consequence of a certain degeneracy or symmetry of the system and disappear for a movement 
of the family as small as desired [5]. Below we will investigate the singularities of the general position 
of the boundary of the parametric resonance domain, since they are the most important from the point 
of view of applications, although the methods developed can also be used to investigate singularities 
of non-general position. 

We will denote the types of the boundary points [5] by the product of multipliers which are on 
the unit circle with powers equal to the dimensions of the corresponding Jordan blocks. For 
example, l*exp( 2 it+)exp(? iw2) denotes the presence in the monodromy matrix F of a double 
p = 1 with second-order Jordan block and two pairs of simple multipliers p = exp( _f io,), exp(_’ io2) 
such that ol, o2 E (0, rc), w1 f 02. For convenience we will introduce certain types of short notation 
as follows: 

BI(~), Bz(-lh BJ (exp(* W) (2.1) 

C,(12)? C*((-1 Y) (2.2) 

D,(l% D2(G1)3)9 W(exp(* W)*> (2.3) 

and also combinations of them 

B12(1(-1)), &3(lexp(f i(N), B*3((-1 W4WW B33(expWq)exp(f io2)) (2.4) 

B,23(1(-l)exp(f io)) 

B,33(1 exp(l% )exp(*iw, )>, B233((-l)exp(Mn,)exp(fio2)) 

B333(exp(+io,)exp(fio2)exp(+io3)), C,&(I*(-1)) 

C2B,((-l)* l), ClB3(12 exp(+io)), C2B3((-I)* exp(+iw)) 

(2.5) 

For example, B1(12) denotes the presence of a double multiplier p = 1 with the second-order Jordan 
block, while the combination CIB3 at a boundary point denotes the presence on the unit circle of a 
double multiplier p = 1 and a complex-conjugate pair p = exp(? iw). 

For our further investigation we will use the results obtained in [5,9], which enable us to determine 
the codimension of a defined type of set of boundary points. The codimension is the difference in the 
dimension of the whole space and the dimension of the given set. Obviously, an n-parametric family 
one only encounters types to boundary points of codimension no higher than IZ. Below we will consider 



912 A. A. Mailybaev and A. I’. Seyranian 

the case when n = 1,2, 3. It follows from the results obtained previously in [5, 91 that in the case of 
the general position all types of boundary points of codimension 1 are covered by list (2.1), those of 
codimension 2 are covered by (2.2) and (2.4), while those of codimension 3 are covered by (2.3) and 
(2.5). 

A qualitative analysis of the stability domain in the neighbourhood of points of its boundary was carried 
out using the theory of versa1 deformations [5, 91. Without going into the details of this theory, we 
will proceed directly to its consequence as far as boundary points of the type (2.1)-(2.5) are concerned 
(for more detail see [5, lo], where autonomous systems are investigated). The stability domain in 
the neighbourhood of boundary points (2.1)-(2.3), apart from a continuous replacement of the 
coordinates, is equivalent to the stability domains of the matrix F’(p’), p’ = (p;, . . . ,p>) in the neigh- 
bourhood of p’ = 0, which, in each specific case, has the form 

B, :(l+p& B, :(-l+p;), B3 : (exp( pi + io)) 

1 1 0 -1 I 0 

D, : 0 I I , 4: 0 -I 1 

Pi P; I+ Pi p; p; --I+/4 

exp( p; + io) 1 
D3 : 

P; + ip; exp( p; + iw) I 

(2.6) 

The matrices in (2.6) are responsible for the stability of the blocks of miniversal deformations 
(normal forms), derived in [5, 91. The corresponding matrices for combined types (2.4) and (2.5) 
have a block-diagonal form and consist of blocks (2.6) where the parameters in different blocks are 
assumed to be independent. For example, the matrices F’(p’) corresponding to a type Cl& boundary 
point (combinations of C, and B3), have the form 

1 I 0 

p; 1 +p; 0 

0 0 exp( p; + iw) 

It is easy (although quite lengthy) to investigate the stability of matrices F’(p’) for cases (2.1)-(2.5). 
As a results, the form of the stability domain (apart from a continuous replacement of the parameters) 
and also the type and form of the adjoining boundary can be determined locally. 

As an example, consider the case C,. The roots of the characteristic equation of matrix F’(p’) (2.6) 
have the form 

p=1+p;/2* pz+(p,) 14 
4777 

Introducing the non-degenerate replacement of parameters q1 = p’i/2, q2 = ~‘2 + (p’J2/4, we obtain 
an expression for the maximum (in absolute value) multiplier 

max I p I2 = 

i 

I+%,+~:-q2. q2co 

(l+q, +&a29 4230 

The stability domain, defined by the condition max 1 p 1 c 1, is shown in Fig. 1. The boundary of the 
stability domain has an inflection at the point C1 and consists of curves of the type Bi and B3, which 
intersect at a non-zero angle, corresponding to the boundaries of the fundamental and combination 
resonances. 

Other types of boundary points can be investigated in a similar way. We summarize the results obtained 
in the form of a theorem. 
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Fig. 1 

Theorem 1. In the case of the general position, the boundary of the stability domain of system (1.1) 
consists of the following: 

(a) in the case of a single parameter, it consists of isolated points of the types Bi, B2 and B3 (2.1) 
corresponding to the fundamental and combination resonances; 

(b) in the case of two parameters it consists of continuous curves of type (2.1) which intersect 
transversally (at a non-zero angle) at points of inflection of types (2.2) and (2.4), 

(c) in the case of three parameters it consists of smooth surfaces of type (2.1) the singularities of 
which are curves of types (2.2) and (2.4) - a “dihedral angle” and isolated points of type (2.3): D, and 
D2 - a “break of an edge”, D3 - a “deadlock of an edge”, and (2.5) - a “trihedral angle”. 

The stability domains in the region of singular points of the above types, apart from a non-degenerate 
continuous replacement of parameters (a diffeomorphism), have the form shown in Figs 2 and 3 (the 
stability domain is represented by the letter S). 

Remark 1. The boundary of the stability domain in the case D3 is a diffeomorphic to the surface specified by 
the equation xy2 = z*, x 3 0, y 5 0 and is a part of the so-called “Whitney-Kelly umbrella” [5]. In the cases D, 
and D2 the boundary of the stability domain is diffeomorphic to the surface x’y’ = .z*, x s 0, y 2 0. 

Fig. 2 
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Remark 2. The singularities of the boundary of the stability domain in the case of the general position for periodic 
systems (l.l), which depend on two or three parameters, are equivalent, apart from a diffeomorphism, to the 
singularities for autonomous systems, listed earlier in (51, despite the difference in the stability criteria and the 
types of boundary points. Note, however, that the types of singularities&, B 123, ClBZ and CzB1 for periodic systems 
are essentially new compared with autonomous systems. The point is that, using Lyapunov’s theorem on reducibility 
[l] of system (l.l), it reduces to a system with constant coefficients. Here both multipliers p = 1 and p = -1 convert 
into the zero eigenvalue of the matrix of an autonomous system forming two Jordan blocks, which is the case of 
non-general position for autonomous systems. 

3. BIRFURCATION OF MULTIPLIERS 

We will consider the eigenvalue problem for the monodromy matrix (1.2) 

Fu=pu (3.1) 

where u is the eigenvector of dimension m, corresponding to the multiplier p. It is of interest to calculate 
the change of the multipliers depending on the change in the parametersp,, . . . ,pn. For this purpose 
we consider, in the parameter space, the continuous single-parameter curves P(E), passing through the 
points p. = p(O), h w ere E is a small parameter. We determine the vectors 

e = (dp 1 cl&),=,, d = ;(d2pldc2),,, 

The increment of the parameter vector can then be represented in the form 

p=po+&e+&‘d+o(E2) 

As a result of a perturbation of the vector p. of the monodromy matrix F we obtain an increment, 
which we represent in the form of a series 

F(p)=F, +&F, +E~(F, +F,,)+... (3.2) 

The matrices Fi(i = 0, 1,2) and Fd are defined by the relations 

Fc =F(po), Fr = i dFej, F2 =’ 5 
a2F 

j=l +j 2 s&l ap,ap,e”ek’ 
Fd 

~5 dFdj 

j=l +j 
(3.3) 

The derivatives are evaluated at p = p,,. 
Suppose p. is the multiplier of matrix Fo. As a result of a perturbation of the vector of parameters 

po, the multiplier p. takes an increment. According to the perturbation theory of non-self-adjoint 
operators [3,4], this increment has different representations depending on the Jordan structure of the 
matrix Fo. 

1. In the case of a simple eigenvalue p. the increment of a multiplier can be represented in the form 
of an expansion in integer powers of E 

p=pu+ep, +E2p2 +... (3.4) 

where the first term is 

PI = v;F,u, / vo’uo (35) 

The vectors u. and v. are the right and left eigenvectors, corresponding to the multiplier p. 

Fouo = POUO, v;Fe = pOv; (3.6) 

Introducing the real vectors r and k of dimension n with components 

rS+iks=v~$-u,/v~u,, s=l,..., n 
5 

(3.7) 



On the boundaries of the parametric resonance domain 915 

where i is the square root of -1, we can write expansion (3.4), taking relations (3.5) and (3.7) into 
account, in the form [4, 61 

p = p. + Kr,e) + i(k.e)le + O(E) (3-g) 

The scalar product in R” is denoted by brackets. If PO is a real number, it follows from (3.7) that k = 0. 
2. Consider the case of a double multiplier Pn with second-order Jordan block. This means that, at 

p = po, the eigenvector and adjoint vector u. and ul, defined by the 

Fo”0 = PO”09 Fo”, = PO”1 +uo 

equations correspond to the multiplier po. For the left eigenvector 
respectively 

(3.9) 

and adjoint vector we have, 

v,TF, = pov;, v;F, = pov; + v; (3.10) 

Assuming the vectors u. and u1 to be fixed, we introduce the normalization 

Vi”, = I, VT”, = 0 (3.11) 

which uniquely defines the vectors v. and vl. 
As a consequence of the perturbation of the parameter vector, an increment of the multiplier can 

be represented in the form of a series [3] 

p=po+EXp, +Ep*+EspJ+... 

The first coefficients p1 and p2 have the form [4,6] 

(3.12) 

PI =~~~’ P2 = (v;F,u, + v:F,u,)/2 (3.13) 

We introduce real vectors f,, f2, ql, q2 with the components defined by the relations 

T aF fis+if~=VO-UO 
JPS 

(3.14) 

T aF T aF qf+iq;=V()-U1+V, -“o, s=l,..., n 

aPS aPS 

Taking relations (3.13) and (3.14) into account, we can write expansion (3.12) in the form 

(3.15) 

Relation (3.15) describes splitting of the double multiplier po with one eigenvector ua in the non- 
degenerate case 

viF,uo =(f,,e)+i(f,,e)zO 

If p. is a real number, we have f2 = q2 = 0. 
3. Consider the case of a triple real multiplier ~2, corresponding to a third-order Jordan block. The 

Jordan blocks for the right and left eigenvectors and adjoint vectors have the form 

Fo”o = PO”O~ Fou, = po”l + uo. Foul = pou2 + uI 

v;Fo = pov;, v:F, = pov;T + vi, v;Fo = pov; + v: (3.16) 

Assuming the vectors uo, u1 and u2 to be tixed, we impose the following normalization conditions on 
vo, v1 and v2 
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Vi”* = 1, VT% =o, v;u*=o (3.17) 

which uniquely define these vectors. In view of the fact that po is a real number, the vectors Ui and vi 
can be chosen to be real. 

A variation of the vector of parameters p = p. + &e + &‘d + o(E*) leads, in general, to splitting 
of the triple multiplier into three simple complex multipliers. This bifurcation is described by the 
relation [3] 

p=po+&p ,+&p*+ep,+ . . . (3.18) 

where p1 = (v~F~u~)“~, and the three complex values of the root correspond to three different p. We 
introduce the vector g with components 

T aF gs= vo-uo, s=l,..., n 
JPS 

(3.19) 

Bifurcation (3.18) then takes the form 

p = p. + (c(g,e))% + o(G) 

We now consider the degenerate case 

viF,u, = (g,e) = 0 

(3.20) 

The triple multiplier p. in this case, as before, can split into three simple multipliers, but in this case 
two of the multipliers are expanded in powers of $2 

p=po+& +lzv* +... (3.21) 

while the third multiplier is expanded in powers of E [3] 

p=po+&l.l,+E2~*+... (3.22) 

Using expansions (3.21) and (3.22) from the equations of the perturbation method we obtain 
expressions for the first coefficients 

PI = 
v;F,G,(F,u,) - v;(Q + Fd)uo 

v;F,u, + vrF,u, 

v; = v,TF,u, + v;F,u, (3.23) 

vz = l-j.+ + v;F,u, + v;F,u, + v;F,ua]/2 

where Go is an operator inverse to F. - pd (I is the identity matrix). Since the matrix F. - poI is 
degenerate, the operator Go is defined on a set of vectors w, which satisfy the orthogonality condition 
viw = 0. The quantity Go(w) is defined, apart from an additive term yua, y = const, on which pl does 
not depend, since v~Fluo = 0. The operator Go(w) can be represented in the form Go(w) = A-Aw + 
yuo, where As = F. - paI - vovr is a non-degenerate matrix [l]. 

We introduce real vectors h and t of dimension n with the components 

s=l,...,n 

and a real matrix R of dimension n X n, defined by the relation 

(Re,e) = v~F,G,(F,u,) - viF*u, 

(3.24) 
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~~~~~o-po~-vo~~~~~~~o-~~~~o], i.j= t,....n 
I I J J 

Using relations (3.23)-(3.25) we can represent bifurcation (3.21), (3.22) in the form 

(Re,e)-(g,d) E 

th 4 1 
yj + o(E) 

p=po+(Re,e)-(g*d)E+O(E) 
the) 

(3.25) 

The vector g is defined in (3.19). 
Expression (3.26) describes the bifurcation of the triple multiplier po in the degenerate case 

t(;e$e;tzrwp the condition (h, e) # 0. Note that, unlike the previous cases, bifurcation (3.26) contains 

4. LOCAL ANALYSIS OF THE STABILITY DOMAIN 
AT SINGULAR POINTS OF ITS BOUNDARY 

Suppose p = p. is a point on the boundary of the parametric resonance domain. We draw a smooth 
curve p = p(s) from this point (p. = p(O), E s 0). Some curves will then lie in the stability domain (for 
small E > 0), while some will lie in the instability domain. We select the directions of the curves e = 
dp/d& (the derivative is taken at E = 0), which lie in the stability domain. The set of such directions 
forms a tangential cone to the stability domain at the point on its boundary p = po [lo]. 

The investigation of the stability along the curve p = P(E) is a single-parameter problem. The asymp- 
totic stability is determined by condition 1 p 1 < 1 for all multipliers. By virtue of the continuous depen- 
dence on the parameters, multipliers which, for p = po, were inside the unit circle do not leave it for small 
E. consequently, the stability along the curve is determined by the behaviour solely of those multipliers 
which, for p = po, lie on the unit circle. It is obvious that, when there are complex-conjugate multipliers, 
it is sufficient to investigate the behaviour of only one of these, in view of the symmetry about the real axis. 

We will consider different cases of the general position when there are one, two or three parameters 
in the system. 

1. Suppose, at p = p. there is only a pair of simple multipliers p. = exp(io) and p. = exp(-io), 
which lie on the unit circle, while the remaining multipliers lie inside the unit circle. Using expression 
(3.8) for a multiplier perturbed along the curve, we obtain an expression for the absolute value of 1 p 1 
in the form 

lp12=l+2[(r,e)COSo+(k,e)sinO]E+o(E) 

Then, the necessary condition for the asymptotic stability of the system takes the form 

(4.1) 

(r cost + k sino, e) G 0 (4.2) 

The behaviour of the simple multipliers p. = 1 and p. = -1 is described by the same relation (4.1) 
on substituting o = 0 and o = rt respectively. Hence, we obtain the necessary condition for stability in 
cases when only these multipliers lie on the unit circle 

po= I: (r,e)<O; PO=-I: (r,e)>O (4.3) 

When the non-rigorous inequalities (4.2) and (4.3) are replaced by rigorous inequalities the necessary 
conditions for stability along the curve become the sufficient conditions. 

2. Suppose, at p = p. there is a pair of double multipliers p. = exp(iw) and p. = exp( -io), to which 
second-order Jordan blocks correspond. Using expression (3.15), which describes the decay of the double 
po, we obtain the change in the absolute value of the multipliers in the form 

lp12=l+2Re,/E[(s,,e)+i(s2,e)J +o(E’) 

s, = f, cos 20 + f2 sin 20, s2 =f,cos20-f, sin20 

(4.4) 
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The square root in (4.4) takes two different values, which differ in sign. Consequently, for stability 
( 1 p 1 < 1) it is necessary for the second term in (4.4) to be equal to zero. This condition is satisfied if 
and only if the radicand is real and non-positive. Hence we have 

(si. e) c 0, he)=0 (4.5) 

Using conditions (4.5) in relation (3.15), we can write 

~p~2=l+(~3-s,,e)~+o(~), s,=q,coso+q,sino 

Hence, we directly obtain the condition for asymptotic stability 

(s3 -sI, e)S 0 (4.6) 

Thus, relations (4.5) and (4.6) are the necessary conditions for asymptotic stability. 
The bifurcations of the double multipliers p. = - 1 and p. = 1 with second-order Jordan blocks are 

described by the same relations if we substitute the values o = 0 and w = rc, respectively, and take into 
account the relations f2 = q2 = 0. Consequently, the conditions for asymptotic stability (4.5) and (4.6) 
in these cases take the form 

po= 1: (fl,e) s 0 (9, -f,,e) 6 0 

po=-1: (fI,e)s 0 (qI +f,,e)aO (4.7) 

Conditions (4.5), (4.6) and also (4.7), when the non-rigorous inequalities are replaced by rigorous 
ones, become the sufficient conditions for asymptotic stability along the curve p = P(E). 

3. We will consider the case of a triple multiplier p. = 1 with a third-order Jordan block. The 
bifurcation of p. = 1 is described by expression (3.20). For a non-zero radicand in (3.2) the multiplier 
p. = 1 splits into three simple multipliers, corresponding to three different complex values of the cube 
root. It is obvious that at least one of the multipliers always lies outside the unit circle, which leads to 
parametric resonance. Consequently, for stability along the curve p = P(E) it is necessary for the radicand 
in (3.20) to be equal to zero, namely 

(g, e) = 0 (4.8) 

When condition (4.8) is satisfied the bifurcation of the triple multiplier p. = 1 is described by 
expressions (3.26). From the first relation of (3.26) we obtain an expression for the absolute values of 
the corresponding multipliers 

(p12=If2Re,/~+O(&) 

Hence we obtain an additional necessary condition for stability 

(h, e) S 0 (4.9) 

Taking inequality (4.9) into account, we can write the expression for the absolute values of the 
multipliers, described by the first relation of (3.26) in the form 

(t-h,e)-(Re’(eh);;g’d) 
1 
E+o(E), d = +$ (4.10) 

For asymptotic stability (I p 1 < 1) it is necessary that the expression in square brackets in (4.10) should 
be non-positive. After elementary algebra, taking (4.9) into account, this inequality can be reduced to 
the form 

(g, dP (Re, e) - (t - h, e)(h, e) (4.11) 

The third multiplier, described by the second relation of (3.26) is real. The necessary condition for 
stability 
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tRe,e)-(g~d)~O 
the) 

for this multiplier, taking (4.9) into account, can be reduced to the form (g, d) s (Re, e), which, in 
combination with (4.11), determines the interval to which the quantity (g, d) belongs, 

(Re, e) - (t - h, e)(h, e) C (g,d) s (Re, e) (4.12) 

In order that the double inequality (4.12) should have solutions for d, it is necessary that (t - h, e)(h, 
e) 3 0 or, taking inequality (4.9) into account, 

(t-h, e) S 0 (4.13) 

Note that expressions (3.26), used above, hold when (h, e) f 0. The case of double degeneracy (g, 
e) = (h, e) = 0, strictly speaking, requires additional investigation. However, in the case considered 
we can avoid general discussions. In fact, conditions (g, e) = (h, e) = 0 specify a straight line in three- 
dimensional parameter space. Moreover, it is well known that the set of directions e of stable curves 
(the tangential cone) in the case of a “break of an edge” D1(13) is a plane angle [6]. Consequently, no 
curve can be drawn in the stability domain along the isolated direction (g, e) = (h, e) = 0, (t - h, e) 
> 0, which violates conditions (4.13). 

Thus, relations (4.8), (4.9) and (4.13) are the necessary conditions for stability along the curve. If we 
add (4.12) to relations (4.8) (4.9) and (4.13) and replace the non-rigorous inequalities by rigorous 
equalities, we obtain the sufficient conditions for asymptotic stability. 

The case of a triple multiplier pa = -1 is similar to that considered above. The corresponding 
inequalities have the form 

(g,e)=O (h,e)sO (t+h,e)aO (4.14) 

(Re, e) s (g, d) s (Re. e) - (t + h, e)(h, e) (4.15) 

The cases considered exhaust all possible versions encountered in the case of the general position 
for one, two or three parameters. 

If there are several multipliers on the unit circle at p = PO, we need to combine the relations 
which determine the stable perturbations for each of these. The general result can be formulated as 
follows. 

Theorem 2. The tangential cones to the stability domain at points on its boundary of the type 
(2.1)- (2.3) are defined by the relations 

K,, =(e: (r,e)SO) 

KB2 = (e: (r,e)Z-0) 

KB, =(e: (rcoso+ksino,e)sOj 

Kc, =(e: (f,,e)aO, (ql -f,,eFOl 

Kc, =(e: (f,,e)cO, (q, +f,,e)aO) 

K,, =(e: (g,e)=O, (h,eFO, (t-h,eFOl 

KD2 =(e: (g,e)=O, (h,eFO, tt+h,ePO) 

KD, = (e: (s,,e)=O, (s,,e)sO, 63 -s,,eFOl 

(4.16) 

The tangential cones for combined types (2.4) and (2.5) are obtained by truncating the tangential 
cones obtained for each of the subtypes. For example, in the case Cl& we have KclBz = Kc, n KB2. 

In the case D3 all the continuous curves, issuing in the directions e E KD3, which satisfy rigorous 
inequalities (4.16), lie in the stability domain for fairly small E > 0, while in the cases Di and D2 only 
curves which satisfy the conditions on the second derivative d = (d2p/da2)/2 (4.12) and (4.15) respectively, 
lie in the stability domain. Note that the tangential cones KD,, Ko2, Ko3 are degenerate (are plane angles 
in three-dimensional parameter space). 
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Theorem 2 enables one, using information at a point on the boundary of the stability domain 
(from the first derivatives of the operator G from (1.1) with respect to the parameters, and also 
the values of the multipliers and the corresponding eigenvectors and associated vectors, calculated 
at p = p,,), to determine, in the first approximation, the stability domain in the neighbourhood of 
this point. Relations (4.16) give an explicit representation of the stability domain. For example, in the 
case of the non-singular point Bi, the tangential cone is determined by the inequality (r, e) G 0. 
Consequently, the tangential plane to the boundary of the stability domain is specified by the 
equation (r, e) = 0, while the vector r is normal to the boundary lying in the parametric resonance 
domain (Fig. 4). In the case of the singular point Ct, the tangential cone is formed by the intersecting 
half-planes (half-spaces) (fl, e) s 0 and (ql - f,, e) s 0. These inequalities define the plane (dihedral) 
angle in the space of two (three) parameters, which is the first approximation to the stability domain 
(Fig. 4). 

5. EXAMPLE 

Consider the plane vibrations of an articulated pipe conveying fluid (Fig. 5). Parts of the pipe are 
connected using elastic joints with stiffnesses cl and c2 and have lengths Ii and 12, respectively. The right 
end of the pipe is free. A fluid with a mass per unit length m and a pulsating velocity u(t) = U(1 + v 
sin Qt) flows in the pipe. We will denote the mass per unit length of the pipe by M. The system has two 
degrees of freedom. We will choose cp and w - the angles of deviation of the parts of the tube from the 
horizontal axis, as the generalized coordinates. 

The linearized equations of motion of the system in dimensionless variables have the form [ll] 

Mij+Btj+Cq=O (5.1) 

v(r) = V(l+ vsin wz), “2 R 

al, ’ 
w=--, a2 - cIc2 

a ml,3 

where the dots denote differentiation with respect to the dimensionless time r. 
The stability of the trivial equilibrium position of the system cp = w = 0 was investigated previously 

[ll] for a number of values of the parameters. In this problem we are interested primarily in singularities 
of the boundary of the stability domain. 

fl 
41-c 25 Cl // 

____-- ,I 

S 

Fig. 4 

Fig. 5 
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We will write Eqs (5.1) in the form (1.1) 

(5.2) 

where 0 is the zero matrix of dimension 2 X 2, while the matrix operator G(z) with the period T = 2n/w 
depends continuously on the dimensionless parameters h, u, o, w, v, V. 

We will fix the parameters h = o = u = 1, which corresponds to similar lengths of the parts of the 
pipe, equal stiffnesses at the joints and a mass per unit length of the fluid half that of the mass per unit 
length of the pipe. We will investigate the stability of system (5.2) in the three-dimensional parameter 
space p = (w, v, V), where the quantities w and v describe the frequency and amplitude of pulsations, 
while Vrepresents the mean flow velocity. When v = 0 we have u(t) = V = const, i.e. a steady system. 
The critical velocity (the minimum velocity above which the system becomes unstable) in this case 
is V,, = (6.2 - 0.4$%)% = 2.0115. 

We will investigate the stabilizing influence of the fluid pulsations at supercritical velocities V > V,,. 
We choose the supercritical value of the velocity V = 2.8 and the pulsation frequency w = 8. By a 
numerical analysis we obtain the value of the pulsation amplitude corresponding to a point on the 
boundary of the stability domain. To do this we need to calculate the monodromy matrix and its 
multipliers for different v. As a result we obtain v = 0.737. The monodromy matrix F was calculated 
by integrating Eqs (1.4) from 0 to T using the Runge-Kutta method. The following multipliers correspond 
to the point p. = (8; 0.737; 2.8) of parameter space 

p I ,2 = exp(f 0.882i), p3 = 0.535, p4 =0.152 

The point p. on the boundary of the stability domain is regular, since the multipliers pl,2, lying on the 
unit circle, are simple. 

By calculating the eigenvectors u. and vo, corresponding to the multiplier pl, and the derivatives of 
the monodromy matrix using Eqs (1.6), we determine the vectors r and k from (3.7). The tangential 
cone KB3 to the stability domain at the point po, by (4.16), is described by the expression 

The vector 

(rcosa+ksino,e)SO, O=argp, 

n = r cos a+ k sin w = (0.03; -2.05; 0.5 I) 

is the normal to the boundary of the stability domain and lies in the instability domain. The boundary 
of the stability domain obtained numerically and the vector n are shown in Fig. 6. This information can 
be used to stabilize (or destabilize) the system by gradient methods. For example, the use of the formula 
for the change in the parameters 6p = -an, where a > 0 is a small gradient step, leads to a reduction 
in the modulus of the multiplier. 

Fig. 6 
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SIPI*= -2a((n,n)<O 

which means stabilization of the system. Gradient procedures can be used for the motion along the 
boundary of the stability domain. In many cases this leads to arrival at a singularity of the boundary of 
the stability domain (for example, at an edge). 

Consider the *point p. = (3.643; 0.5555; 2.6) in parameter space, in which the monodromy matrix F. 
has the following eigenvalues (multipliers) 

PI = p*=-1, p3 = 0.225, p4 = 0.026 (5.3) 

It turns out that .thesecond-order Jordan blocks (3.9) and (3.10) correspond to the double multiplier 
(we denote it by p. = -1) 

uc = (0.92; 0.7; -0.59; 2.49)? 

v. = (3.34; -2.27; 1.21; -0.3)r, 

which satisfy normalization conditions (3.11). 

ui = (0.11; -0.35; 0.12; 1)r 

vi = (-0.57; 1.1 I; 0.4; 0.4)T (5.4) 

It follows from (5.3) that only the double multiplier p. = -1 pertains to the boundary, while the 
other two lie inside the unit circle. Hence, the point po lies on the boundary of the stability domain in 
the parameter space p = (w, v, V). In the neighbourhood of the point p. we reconstruct the stability 
domain using the results of Sections 2 and 4. According to notation (2.2), the type C2 singularity - a 
“dihedral angle”, corresponds to the point pa. We will determine the tangential cone to the stability 
domain at this point. Using the vectors (5.4) and calculating the first derivatives of the monodromy 
matrix with respect to the parameters using (1.6), we obtain from (3.14) 

fi = (-5.15; 45.2; -7.77), ql = (4.49; -31 .I; 3.16) (5.5) 

By Theorem 2 these vectors define the tangential cone to the stability domain at the point p. 

K,-2 =(e: (f,,e)sO, (q, +f,,e)aO) (5.6) 

The vectors fi and -(ql + f,) are normals to the sides of the “dihedral angle” lying in the parametric 
resonance domain. The vector, tangential to the edge of the “dihedral angle”, is equal to 

e.,= (q, + fi) X fi = (98.8; 18.6; 42.7) 

In Fig. 7, on the left, we show the dihedral angle (5.6), which is an approximation of the boundary 
of the stability domain in the neighbourhood of the point pa. For comparison we show in Fig. 7, on the 
right, the boundary of the stability domain obtained numerically, which confirms the presence of a 
singularity and agrees well with the results obtained. Note that, to obtain an approximation of the stability 
domain, only a single integration with respect to time of differential equations (1.4) from 0 to T is 
necessary to find the monodromy matrix and to evaluate the three integrals (1.6). Information on the 
tangential cone (5.6) can be used for further motion along the edge of the boundary of the stability 
domain in order to optimize the system stability. 

Fig. 7 
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